Disruption of Endocytosis with the Dynamin Mutant shibirets1 Suppresses Seizures in Drosophila.
نویسندگان
چکیده
One challenge in modern medicine is to control epilepsies that do not respond to currently available medications. Since seizures consist of coordinated and high-frequency neural activity, our goal was to disrupt neurotransmission with a synaptic transmission mutant and evaluate its ability to suppress seizures. We found that the mutant shibire, encoding dynamin, suppresses seizure-like activity in multiple seizure-sensitive Drosophila genotypes, one of which resembles human intractable epilepsy in several aspects. Because of the requirement of dynamin in endocytosis, increased temperature in the shi(ts1) mutant causes impairment of synaptic vesicle recycling and is associated with suppression of the seizure-like activity. Additionally, we identified the giant fiber neuron as critical in the seizure circuit and sufficient to suppress seizures. Overall, our results implicate mutant dynamin as an effective seizure suppressor, suggesting that targeting or limiting the availability of synaptic vesicles could be an effective and general method of controlling epilepsy disorders.
منابع مشابه
Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin
A stable HeLa cell line expressing a dynamin mutant, dynts, exhibits a temperature-sensitive defect in endocytic clathrin-coated vesicle formation. Dynts carries a point mutation, G273D, corresponding to the Drosophila shibirets1 allele. The ts-defect in receptor-mediated endocytosis shows a rapid onset (< 5 min) and is readily reversible. At the nonpermissive temperature (38 degrees C) HRP upt...
متن کاملImmunocytochemical study of endocytotic structures accumulated in HeLa cells transformed with a temperature-sensitive mutant of dynamin.
Dynamin is a 100-kD GTPase, which is required for clathrin-mediated endocytosis. Recent studies have revealed that dynamin is closely involved in clathrin-coated vesicle formation. In this study we investigated the ultrastructure of endocytotic structures accumulated in HeLa cells that were transformed with a temperature-sensitive (ts) mutant of dynamin to clarify which step was blocked in dynt...
متن کاملDynamin regulates metaphase furrow formation and plasma membrane compartmentalization in the syncytial Drosophila embryo
The successive nuclear division cycles in the syncytial Drosophila embryo are accompanied by ingression and regression of plasma membrane furrows, which surround individual nuclei at the embryo periphery, playing a central role in embryo compartmentalization prior to cellularization. Here, we demonstrate that cell cycle changes in dynamin localization and activity at the plasma membrane (PM) re...
متن کاملDrosophila Cip4 and WASp Define a Branch of the Cdc42-Par6-aPKC Pathway Regulating E-Cadherin Endocytosis
BACKGROUND Integral to the function and morphology of the epithelium is the lattice of cell-cell junctions known as adherens junctions (AJs). AJ stability and plasticity relies on E-Cadherin exocytosis and endocytosis. A mechanism regulating E-Cadherin (E-Cad) exocytosis to the AJs has implicated proteins of the exocyst complex, but mechanisms regulating E-Cad endocytosis from the AJs remain le...
متن کاملNeuronal Mechanisms of Learning and Memory Revealed by Spatial and Temporal Suppression of Neurotransmission Using Shibirets1, a Temperature-Sensitive Dynamin Mutant Gene in Drosophila Melanogaster
The fruit fly Drosophila melanogaster is an excellent model organism to identify genes and genetic pathways important for learning and memory. However, its small size makes surgical treatment and electrophysiological manipulation technically difficult, hampering the functional analysis of neuronal circuits that play critical roles in memory processing. To circumvent this problem, we developed a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 201 3 شماره
صفحات -
تاریخ انتشار 2015